

Materials booster

Develops, produces & sells

Silicon-based nanopowders that
disruptively improve the
properties of industrial materials

Continuous Innovation

Continuous Innovation

- A spin off of (2010)
- The technology is protected by several CEA patents, granted with exclusive rights to

which pursued innovating and filed several own patents :

1	•	
Patent Title	Grant dates	Filing dates
"Method for producing multilayer submicron particles by	Jun 2015 - Fr	Jul 2012 - Fr
laser pyrolysis" : coated particles ($Si\Omega C$)	Sep 2017 - Eur	Jul 2013 - PCT
	May 2018 - Cn	
	Jun 2018 - Jp	
"Submicron particles containing aluminium" : SiC Ω Al	Oct 2018 - Eur	Nov 2013 - Fr
	Apr 2019 - USA	Nov. 2014 - PCT
"Method for producing a polymer based material"		Sep 2015 - Fr
nano-Si in batteries		Dec 2017 - Fr
"Valve and sealed container for submicron particles, and	Oct 2016 - Jp	Nov 2011 PCT
method for using same": Safe Containers and NanoAirlock	Jun 2017 - Eur/Fr	Nov 2012 - Fr
valves		
"Suspension system for sub-micron particles in a liquid, and		Feb 2013 - Fr
method for using same": Safe Containers external pump		
system		

NanoReg²

Project #646221, Funded by the Horizon 2020 Framework Programme of the European Union

RawMaterials
Connecting matters

Continuous Innovation

@nanamakers with & for global partners

Nanomakers exports 99% of its products outside of Europe.

Precise, reliable and secure technology

... guarantee of results

Laser pyrolysis process:

- 1. The laser beam breaks the molecules of gaseous or vapor–phase precursors
- 2. Nanoparticles start building up abruptly
- 3. Particle size is controlled by a fast quenching which stops the particle growth

Experience and expertise:

- 33 years of CEA know how
- + 7 years at pilot scale
- + 7 years at industrial scale

SiC, $Si\Omega C$ / Si nanopowders

Strict crystal growth &

Homogeneous:

size control Low particle **size** deviation.

Pure:

High **purity** batches, **low O**₂ & metallic content

Reproducible:

Similar particle size distribution, chemical composition

from **one lot to another**.

Unique industrial practice

CONFIDENTIAL

Customizable:

Size, Surface, Coating

Various value propositions

under different forms

Superior quality recognized ...

By *experts*:

Kazuya Shimoda of National Institute for Materials Science (NIMS), Ibaraki/Tokyo and Takaaki Koyanagi of **Kyoto University**, **Kyoto**

regarding:

- Particles size distribution.
- Chemical purity C/Si ratio,
- Impurities content and 02,
- **Industrial** production capability

In: « Surface properties and dispersion behaviors of **SiC nano**powders », Colloids and Surfaces A: Physicochem. Eng. Aspects 463 (Sept. 2014) 93

Mean.= 35 nmS.D. = 13

2019

And by our *customers*: Eck Industries (USA):

« First of all the quality of the powder received from Nanomakers was very good. The particle distribution was very tight and there was no apparent chemical **contamination**. From a practical aspect that means better incorpor and into the meit and shorter processing times to get an acceptable particle distribution. I do not hesitate to say the **Nanomakers SiC** s the **best on the market**. »

An Industrial Company

An industrial company

Industrial production facility in Rambouillet (50 km **Paris**)

... since 2012

- > 20 t/year capacity
- Storage & distribution AIR LIQUIDE for 200+ t/year

- Procedures, Certificate of Analysis
- Own quality control lab
- ISO 9001

- « no contact » Strategy
- for small and larger quantities

Creating value for our customers

Creating value for our customers

Applications examples:

- mech & chem reinforcement, batteries density etc

		1000		AG		
	Semiconductors	Energy Storage	Aerospace Auto	motive	Other appl	ications
Targeted end products	Elastomers (e.g. FFKM/FKM) for high performance seals	Anode material for Li-ion batteries Marketed	Aluminium alloy composite powde Additive Manufacturi	ers for	Armouring	Plating
Added value proposition	Longer seals lifetime & Lower cost of ownership	Doubled energy density of anode batteries	Lightweigh structures & p		Lighter protection devices	Increased abrasion resistance

Application zoom #1

Semiconductor market

Semiconductors – Wafer carriers, jigs, etc...

Current market drivers:

Heavier doping for **high power electronics**

- → higher process temperatures
 - → out of quartz operating range
 - → to be **replaced by** ??

Desired properties of the sintered materials:

- ✓ High density sintering ability
- ✓ Stability at high temperature
- ✓ **Thickness** up to 5mm
- ✓ High purity for a better doping control

Sintering with Nano SiC

TIM SIC 99	Color (Free powder)	SSA (m ² /g)	Density (g/cm ³)	APS (nm)	Stand. Dev. (nm)	TEM
35nm	Gray	48 - 58	3,1 – 3,2	35 - 40	<10	100 nm
75nm	Light gray	24 - 29	3,1 – 3,2	65 - 80	<20	100 nm

Specifications

- Oxygen < 1%
- Moisture content < 1%

Our proposal

Spark Plasma Sintering

Fast growing process → **High** production **rate**

No additive (+ high purity product) → **Contamination-free** parts

Control on the sintering parameters → **Customized parts** properties

Our proposal

Spark Plasma Sintering

Sintered part using SPS and Nanomakers nano SiC without additive

Demonstrator part (Ø 3cm, thickness 3mm)

Nanomakers has reached up to now a **sintering density of 96-99%**, depending on the nature of the nanopowders.

Sintering with Nano SiC

Advantages

in sintering MM SIC 99

- Faster sintering process, higher production rate and reduced cost compared to CVD method
- Very high sintering density without sintering additive
- Very high product purity, metallic traces in ppm level
- Resistance to very high temperatures
- Various sintering methods can be used

Application zoom #2

SiC ceramics for filtering applications

Filtering membrane

The nano SiC, raw materials for ceramic applications

Potential Applications

Diesel Motor – Particles filters

Desired properties of the sintered pieces:

- 1) High level of porosity
- 2) Fine porosity
- 3) High mechanical strength
- 4) No metallic impurities

Material selection criteria:

- 1) High Young modulus
- 2) Fine particles
- 3) High purity

Beurotte, A. Doctoral dissertation. Ecole Nationale Supérieure des Mines de Paris, 2011.

Our proposal

The nano SiC, raw materials for ceramic applications

Isostatic compression & post treatments

Mixing with an inorganic defluoculant

Isostatic compression (2000bars)

Debinding (500°C)

Natural sintering (2000°C)

Final part

➤ Open porosity ~ 48%

Application zoom #3 SiC ceramic other applications

Applications for ceramics

The nano SiC, raw materials for ceramic applications

Potential Applications

Ballistic protection – Shielding of vests and transportation vehicle

Role of the ceramic:

- 1) Erode the projectile
- 2) Limit its penetration
- 3) Fragment the projectile
- 4) Distribute kinetic energy

Material selection criteria:

- 1) Hardness, compressive strength
- 2) Low density
- 3) Reasonable cost

Applications for ceramics

The nano SiC, raw materials for ceramic applications

Potential Applications

Aerospace – Mirrors and telescope structures

Desired properties:

- 1) Thermal stability
- 2) High rigidity
- 3) Corrosion resistance

Material selection criteria:

- 1) High Young's modulus
- 2) Low density
- 3) High thermal conductivity
- 4) Low coefficient of expansion

Applications for ceramics

The nano SiC, raw materials for ceramic applications

In conclusion...

Nanomakers capabilities:

- Materials
 - ➤ Highly pure SiC nanoparticles
 - Different sizes of nanoparticles
 - Pre-agglomeration of the nanoparticles (granulation)
- Sintering
 - Spark plasma sintering for highly dense parts
 - Isostatic compression for porous parts

THANKS FOR YOUR ATTENTION

When small makes a difference:

the « Nano effect »